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A B S T R A C T  

Given an expansive action a of Z 2 by automorphisms of a compact con- 
nected metrizable abelian group X, we show how the entropy of the action 

may be decomposed into local contributions, 

(1) h(~) = ~ h(~~ 
p_<c~ 

in which the summand h (~'b) (~) represents the p-adic entropy due to arith- 

metic or geometric hyperbolicity in the direction (a, b). We recognize the 
p~adic contribution as an integral over the p-adic unit circle, in analogy with 
the global counterpart. As (a, b) changes, the decomposition (1) changes 
only when the llne through (a, b) passes through one of a finite collection 

of critical directions, which are explicitly identified. 

1. I n t r o d u c t i o n  

Let c~ be an ergodic au tomorph i sm of a compact  metr izable  group X.  By Berg's  

theorem [Be], Haar  measure on X is max imal  for c~, so we may speak of the en- 

t ropy of a ,  h(a) ,  to mean  either the topological or the metric  entropy. Yuzvinskii,  

[Y], has shown how h(a)  may be decomposed into three cont r ibut ions  

(1.1) h(~) = h ( a x / x o )  + h(c~xo/z)  + h(~)  
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where X ~ is the connected component of the identity in X, and Z is the centre 

of X ~ The possible values of the first two terms are the logarithm of an integer 

or infinity, and zero or infinity respectively. The third term corresponds to an 

automorphism/3 of a compact connected abelian group Z. For the case where Z 

is finite dimensional (in which case it is a solenoid),  Yuzvinskii has computed 

the entropy h(/3). To explain his formula, notice first that 2 is a subgroup of 

Qd for some d; it follows that ~ is determined by an invertible rational matrix 

B E GL(d, Q). Then 

(1.2) h(/3) = logs + log + I ,1 
i= l , . . . ,d  

where {)~} is the set of eigenvalues of B and s is the least common multiple of 

the denominators of the coefficients of the characteristic polynomial of B. 

In [LW], Yuzvinskii's formula is decomposed into local contributions arising 

from arithmetic hyperbolicity. In order to describe this, assume that ,~ = Qd. 

Then the automorphism/3 of ~d may be lifted to an automorphism/~ of QfA, 

(1.3) 1 1 
in a manner analogous to the covering R d --, T d of homeomorphisms of the d- 

torus. This covering space argument gives a further decomposition of Yuzvinskii's 

formula (1.2), 

(1.4) h(fl) = E E l~ 
p<_r162 i=l,...,d 

where {)%p} is the set of eigenvalues of B in a splitting field for the character- 

istic polynomial of B above Qp, and the sum is taken over all the inequivalent 

completions of Q. 

Now consider a pair of commuting automorphisms of a compact group X, 

viewed as an action c~: Z 2 ~ Aut(X) of Z 2. Haar measure is again maximal (see 

[LSW], Section 6), though it is no longer uniquely so in general. The analogous 

decomposition to (1.1) is shown in [LSW] 

(1.5) h(a) = h ( a x / x o ) + h ( a x o / z ) + h ( f l )  
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where X ~ is the connected component of the identity in X, and Z is the centre 

of X ~ The third term is again an action of Z 2 on a compact connected abelian 

group. In [LSW] the entropy of such an action is ultimately expressed in terms 

of certain algebraically defined constituent actions which we now describe. Let 

fit = Z[u~ 1, u+112 J, and let p be a prime ideal in fit. Consider the commuting 

automorphisms • • on the fit-module 9~ = fit/p. This module determines 

a Z 2 action c~ ~ by defining c~(1,o) and a(0,1) to be the automorphisms of X~a = 

dual to •  • respectively. For such an action, the entropy is computed in 

[LSW]: h(c~ ~Ip) = 0 if p is not principal, h(o~ ~Ip) = c~ if p = {0}, and 

f01f01 (1.6) h(a  Ip) = l o g  II(e , e2"iS2)ldsads2 

if p = (f) for some f r 0. In general, h(B) in (1.5) is expressed as a limit of sums 

of expressions of the form (1.6) - -  see Section 4 below. 

Our purpose here is to describe an extension of (1.4) to the case of Z 2 actions, 

taking (1.6) as the starting point. There are two immediate difficulties. Firstly, 

the locally compact covering space argument (1.3) cannot be applied here: if 

the entropy is positive and X is connected, then the compact group is infinite- 

dimensional. Secondly, the formula (1.4) pertains to the map ~ as opposed to the 

action generated by ~. We avoid the first difficulty here by restricting attention 

to expansive actions, which allows the dynamical system to be approximated 

by periodic points. The second difficulty is resolved as follows. Consider the 
A 

automorphism ~ of Z[~] dual to multiplication by ~-. As pointed out in [LW], 

(1.7) h ( ~ ) = l o g + l ~ l ~ + l o g + l  12+log+l 1 3 - - l o g ~ + l o g 2 + 0  

and 

(1.8) h (~- l )  = log+ [~l~ + log+ [~12 + log+ 1~[3 = 0 + 0 + log3. 

Here we think of (1.7) and (1.8) as a decomposition of h(fl) into oriented local 

entropies, for the directions +1 and -1  respectively, in the Z action generated 

by ft. This leads to the following diagram representing the type of hyperbolicity 

in the dynamical system defined by fl, 

(1.9) �9 3-adic 2,c~-adic , 
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For an expansive Z 2 action a of the form described above, we shall give a 

decomposition of h(a) into oriented local entropies 

(1.10) h(a) = E h(a'b)(a) 
p~c~ 

for all but finitely many directions _b in Z 2. The decomposition (1.10) into local 
a 

entropies will be seen to be invariant under small changes in the directions, and 

it is therefore constant in a collection of cones. These cones turn out to be finite 

in number, and they are explicitly identified. 

We restrict attention to expansive actions on connected groups (for reasons 

explained in Remarks 1.1 and 1.2 of Section 5). 

ACKNOWLEDGEMENT: The authors would like to express their thanks to the 

referee for careful comments leading to expository improvements. 

2. O r i e n t e d  en t rop ie s :  cycl ic  c a s e  

Recall that ~R = 7/~[u~ 1, ~11 and any 9~-module ffJt defines a Z 2 action a N 

generated by the automorphisms dual to multiplication by Ul and u2 on the 

compact abelian group X ~  = ffYt. If ffJt = ~R/p, p a prime ideal not containing 

any constants, then a N acts expansively if Vc(p) = {(zl, z2) E C21 f ( z l ,  z2) = 

0 for all f e p} contains no point with IZl] = Iz2] = 1 (see [S] for this result and 

the associated definitions). More generally, IS] proves that a N is expansive if and 

only if 9Jr is Noetherian and a ~/p is expansive for each prime ideal p associated 

to the module ff)~. 

A p e r i o d  for the action a m is a finite-index subgroup A C Z 2, and the set of 

points with period A is defined by 

(2.1) FixA(a ~ )  = {x e X ~  I a~ (x )  = x for all n e A}. 

It is clear that  an expansive action has finitely many points of any given period. 

In [LSW], Section 7, it is shown that this quantity has a definite growth rate as 

HAll = dist(A\{0}, {0}) --* oc, 

(2.2) h(a~  ) = 1 lim log I F i x i ( a ~ ) l  
IIAII-~ JZd/AJ 

where h(a ~)  is the topological entropy of am. 

A d i r e c t i o n  in Z 2 is a vector (a, b) E Z 2 with a and b coprime (include the 

directions (=t=l, 0) and (0, • 
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Definition 2.1: Let a ~ be an expansive Z 2 action on the compact group X~ .  For 

each direction (a, b) and integer N >_ 1, let X N,(a,b) denote the closed subgroup 

(2.3) X N'(a'b) {x  �9 XffJll ~ol = a ( n b , - n ~ ) ( z )  = x } .  

Define the automorphism/3N,(~,b) to be the map a~,b) restricted to X N,(a,b). 

LEMMA 2.2: I r a  ~ iS expansive, then ~N,(~,b) iS also. 

Proo~ First notice that the Z 2 action on X ~  generated by the maps a~,b) and 

O~(Nb,_Na)?OI is expansive (this follows easily from the criterion for expansiveness 

described above). It follows that there is an open neighbourhood U of the identity 

in X~,  for which 

(2.4) A ~ n ~ m (O~(a,b)) (a(Nb,_Na)) (U) = {1}. 
n,mEZ 

Now V = V N X N,(a,b) is an open neighbourhood of the identity in X N'(a'b) in 

the subspace topology. Moreover, it is clear that 

(2.5) N (OZ(a,b)) (Ol(Nb,-Na))m( U ~ xN'(a'b)) "~ ~'~ (~N,(a,b)) (V) : {1},  

n,mEZ nEZ 

showing that /~N,(a,b) a c t s  expansively o n  X N'(a'b). m 

The automorphism/3N,(~,b) is therefore an expansive automorphism of a com- 

pact group. If X N'(~'b) is assumed to be connected, then it follows by ILl that it 

is a solenoid. We assume now that X N,(a,b) is connected in the following sense: 

the quantities defined below are only defined when X N,(~,b) is connected. If X ~  

is connected, then this is so for all but finitely many directions (a, b). By [LW], 

we therefore have 

(2.6) h(Zu,(o,~)) = ~ h~(Z~,(o,~)) 
p<c~ 

where hp(~N,(a,b)) is the contribution to the entropy of h(~N,(a,b)) due to arith- 

metic hyperbolicity above the p-adic completion of the rationals (in the cases 

p < c~), and geometric hyperbolicity (in the case p = c~). 

Assume from now on that  the ~t-module ~/t is of the form ~ / ( f )  for some 

non-constant irreducible polynomial f .  
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Definition 2.3: The (a, b ) -or ien ted  loca l  e n t r o p i e s  of a ~n are the quantities 

(2.T) h(;,~l(~ ~) 1 = lim hp(~g,(a,b)) p E P, 
N--oo N ( a  2 + b 2) 

wherever the limit exists (here P is the set of inequivalent completions of Q). 

It is clear that the local entropies do not always exist (for instance, there is 

no reason a priori to assume that Xg,(a,b) is connected). The next definition 

introduces directions in which the oriented local entropies exist. 

Definition 2.4: Given f E Z[ltl  =kl, ~2=l=1], the a s s o c i a t e d  c o n e s  of f are the open 

cones in Z 2 with vertex at the origin whose edges are lines orthogonal to lines 

joining any pair of points in the support of f .  

For example, if f (u l ,u2)  = 3 + ul  + u2, then the support of f is the set 

{(0,0) ,(1,0) , (0,1)}.  The pairs ((0,0),(1,0)),  ((0,0) ,(0,1))  and ((1,0) , (0,1))  

define orthogonal lines u2 = 0, Ul = 0 and Ul = u2 respectively. Finally, the six 

associated cones of f are the open sets 

{ ( U l , U 2 ) l u l > 0 ,  U l > U 2 } ,  { ( u , , u 2 ) l u l > 0 ,  U l < U 2 ,  u 2 > 0 } ,  

{(Ul,U2)l Ul > 0,~2 < 0}, {(u1,~2)1Ul < 0, Ul > ~2}, 

{(Ul,U2)[ u 1 < 0, u I ( u 2 , u  2 < 0}, and {(Ul,U2)[ Ul < 0, u2 > 0}. 

THEOREM 2.5: The oriented local entropies form a decomposition of the entropy, 

(2.8) h("~) = Z h~~ 
p<_oo 

for any direction (a, b) in an associated cone of f .  

In order to see this, we first establish that the sum in (2.8) is in fact finite. 

This allows us to permute taking limits in periods with the summation and to 

deduce (2.8) from (2.2). The proof that the local entropies exist in associated 

cones is postponed until Theorem 3.1. 

LEMMA 2.6: The sum (2.8) has only finitely many contributions. 

Proof of Theorem 2.5: Assume the local entropies exist, so there is convergence 
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in (2.7). By (2.2) and Lemma 2.6 we have 

E h (a ' b ) ( c~ )=  E lira 1 N~oo N(a 2 + b2) hp(flN'(a'b)) 
p<oo p<_oo 

= lim 1 
p<_~ 

1 
= lim h(flN,(~,O) N~oo N(a 2 + b 2) 

= lim 1 Mlimo ~ -  IogJFixM(flN,(a,b))l N-*c~ N(a 2 + b 2) 

= lim lim 1 g-.~o M-.oo M N ( a  2 + b 2) Iog JFixM(a'b)Z+N(b'-~)Z(~)J 

= h(a~) ,  

which completes the proof. | 

Notice that  in the above proof, we have used (2.2) twice: once for expansive Z 2 

actions, and once for expansive Z actions. The normalization - ~  in Definition 

2.3 is explained by the proof above: it is the ratio between M N  and the index 

of the subgroup M(a, b)Z + N(b, - a ) Z  C Z 2 

We now turn to the proof of Lemma 2.6. An automorphism 0 of a solenoid 

has h y p e r b o l i c i t y  se t  P(0) when hp(O) = 0 if and only if p • •(0). We aim to 

recognize the contributions to the global entropy as arising from the eigenvalues 

of large rational matrices. We shall need the following elementary observations. 

[1] P(01 x 82) = 1P(01) U ~(02). 

[2] IP(0 a) = P(0) for all non-zero k C Z. 

Proof of Lemma 2.6: Assume that (a, b) lies in an associated cone of f .  Define 

a new polynomial F(ul ,u2) = f(u~2+b2,U~2+b2). We claim that  F is then a 

polynomial in the variables s and t, where t = u~u~ and s = u-~bu~. To see this, 

it is enough to notice that the monomials u~ 2+b2 and u~ 2+b2 can be expressed in 

terms of s and t. This is clear: 

(2.9) u a 2 + b  2 _~_ 8 - b t  a, - a2+b 2 ~ 8a$ b. 
1 u2  

This amounts to a diagonalisation of a generalized power of X N'(a'b) in the 

following sense. 
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Let ff)~ = 9 t / ( f ) ,  92 = ~ / ( f ( u ~  2+b2, u~2+b2)), and ~ = Z[s • t •  t ) l  ~- 

Z [ u ~ l , u ~ 2 ' ] / ( F ( u , , u 2 ) ) .  Notice that 2 may be viewed as an 9~-module and 

therefore determines a Z 2 dynamical system. Now it is clear that 

(2.10) ( a ~ )  (a2+b2) ~ a m x . . .  x a m 

where the left hand side denotes the Z 2 action generated by the automorphisms 

a~a2+b2,0 ) and a~0,a2+b2 ), the right hand side is an (a 2 + b2)2-fold Cartesian prod- 

uct, and ~ denotes algebraic isomorphism (see [W] for a more general discussion 

of this kind of rescaling, and a detailed description of the isomorphism (2.10)). 

It follows that 

,~ , ( , , ,b )  x . . .  x ,am " " ' ~  \ (,,~+b") 
, , , , ( o , b )  = 

/ ~ \ (a2+b 2) 

(zN,I1,01) 
By the remarks [1] and [2] above, we deduce that 

(2.11) P(Z~(~,b)) = P(Z~,(1,0)). 

For the purposes of this Lemma, we may therefore assume without loss of gen- 

erality that (a ,b)  = (1,0). The change of variable from u l , u 2  to s , t  takes a 

direction in the associated cone of f to a direction in the associated cone of F,  

so we may assume additionally that (1,0) is in an associated cone. 

So consider the map J3N,0,0), where ff)~ = f f l / ( f ( u l , u 2 ) ) ,  and f ( u l , u 2 )  = 

fou~ ~ + f l u l u ~ '  + . . .  + fdU d, where f O , . . . , f d  e Z. (It is more natural to 

write a general polynomial for which (1, 0) lies in an associated cone in the form 
.e d ha.  fo + f lUlU~ ~ + "'" + jdUlU2 , it will be convenient for us to multiply by the 

monomial u~ a to make the leading Ul coefficient constant.) 

Given a polynomial g(u2) �9 Z[u2], with g(u2) = go + glu2 + . . .  + gkuk2, define 

the N-c i rcu lan t  of g to be the N x N integer circulant matrix whose first row 

is (go,.- . ,  gk, 0 , . . . ,  0). 

Now 

fit 
(2.12) (1 - u2 N) ~ Z[Ul• 

(as Z[u~]-modules);  under this identification, the relations given by the vanish- 

ing of f ( u l ,  u2) = fou'~ ~ + f l u l u ~  ~ + " "  + fdUdl become 

(2.13) --udpd = Po + uIPI +"" + ud-IPd-i 
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where Pi is the N-circulant associated to fiu'~ ~ (by our writing of f ,  n d =  0, 

so the matrix Pd is diagonal). It follows that the automorphism ~3N,O,0) of the 

solenoid X ~  '(1'~ is given explicitly as one in the form of Lawton, 

X N'(I '0) : {x  e (V N)Z I (Xk, �9 � 9  Xk..F(d-t))P = (x(k+l),. �9 xk+d)Q} 

with the automorphism given by the left shift, where 

(2.14) P =  

I 0 
0 0 I 0 

I 
Po 1)1 . . .  Pd-1 

and 

(2.15) Q= 
z " z _p.]' 

Thus, P(J3N,(~,b )) is contained in the set of places for which some eigenvalue of 

the rational matrix 

(2.16) A = Q - 1 p  = 

I I 0 
O0 0 I 0 

I 
Ro R1 . . .  Rd- i  

is not a unit (here each Ri is an N • N circulant with at most one rational 

entry per row). For each N • N circulant matrix Ri there is an associated 

monomial r~ e Q[x]/(1 - xN}. This assignment is functorial: the matrix Ri 

is multiplication by r~(x) on Q[x]/(1 - x N} with the canonical basis, so the 

polynomial corresponding to the product of two circulants is the product of the 

polynomials. The eigenvalues of R~ are the zeros of Hj=l ..... N ( r i ( e 2 ~ r i j / N )  - -  ~ ) "  

Thus, we may identify the matrix A with the linear map 

(2.17) 

1 0 
0 1 0 

1 
ro T1 . , .  r d _ l  
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on (Q[x] / (1-  xN)) d. To find the eigenvalues of (2.16), first find the formal 

eigenvalues of (2.17), that is, solve the equation 

(2.18) ro(x) 4. rl(x)A(x) 4- r2(x)A(x) 2 4- . . .  4- rd_l(x)A(x) d-1 ---- A(x) d 

in algebraic functions A(x). For each of the d solutions Al (x) , . . . ,  Ad(x) to (2.18), 

solve the equation 

(2.19) 1-I - = 0 
j----1,...,N 

for A. Thus the eigenvalues of (2.16) are the solutions of 

(2.20) H 1-[ = 0. 
k=l,...,d j~-l,...,N 

(In (2.19) and (2.20), i denotes the usual square root of -1 . )  Expanding (2.20) 

gives a polynomial with rational coefficients of degree d x N, whose coeffi- 

cients are symmetric functions in the Ak(e2"ii/N). Evaluating (2.18) on the unit 

root e 2€ gives a polynomial equation with algebraic coefficients satisfied by 

)~k(e2~rij/N). Each coefficient  re(e 2~rij/N) in this polynomial has Ire(e2"~jlN)l p less 

than or equal to 1 for all but finitely many primes p. The exceptional primes are 

those dividing the denominators of the re's or the determinant of Pal, and this 

is clearly a finite set. It follows that log + I,~k(e2~riJ/N)l is zero for all but finitely 

many primes p, independently of N. | 

3. S tabi l i ty :  cyclic case 

It is not immediately clear from the definitions how to compute the oriented local 

entropies (equivalently, how to find the zeros of the principal associated primes 

of 9~/(f, 1 - uNbu2 Na) as a Z[(u~u~)+l]-module) without passing to the (a 2 + 52) 

power of the system. We describe one method here. Given a Z 2 action ~, and a 

matrix B E SL(2, Z), define a new action B~ by setting 

(3.1) B ~ .  = ~nB-1. 

If a = a ~/(f) then a s  = a ~ / ( ' I )  where Bf (u l ,  U2) : f ( u  (1'0)B-1, U (0'I)B-1). If 

(a, b) is a direction in Z 2 then we may find a matrix B E SL(2, Z) for which 

(3.2) BOl(a,b) -~ O~(1,0 ) 



Vol. 93, 1996 O R I E N T E D  LOCAL E N T R O P I E S  291 

since a and b are coprime. 

Thus, in finding flg,(~,b) we may assume without loss of generality that  (a, b) = 

(1,0). However, the change of variables will not in general send (b , -a )  to (0, 1) 

of course; let us assume that  the change of variables sends (b, - a )  to (c, d). 

Fix M = ~ / ( f ) ,  where f is a non-constant polynomial, and consider the map 
M a(1,o ) restricted to points of period N(c, d), d r 0. As Z[u~i]-modules, 

(3.3) (1 - (u~ud) N) = ~ u~Z[u~l] ~ Z[U~I]N(c'+d')" 
j = l  ..... N(c2 +d 2) 

It follows that  

(3.4) ~- Z[U~I]N(c'+d') 
( f  , 1 - ( u ~ u d )  N)  --  AZ[u~I]N(c'+d2) 

(again, as Z[u~l]-modules) where A is the matrix whose jth row comprises the co- 

efficients of the polynomial uJlf(ul, u2) (reduced using the relation (u~ud) N = 1) 

and written out in ascending powers of u2 with coefficients in Z[Ulil]. 

THEOREM 3.1: Let 97~ = f f t /(f) ,  where f is a non-constant irreducible polyno- 

mial. Then, for any direction (a, b) inside an associated cone of f ,  X N'(a'b) is 

connected. Moreover, the (a, b)-oriented local entropies exist, and the decompo- 

sition of h(a ~)  into (a, b)-oriented local entropies, 

= 

p<or 

is constant as (a, b) varies in each associated cone of f .  

That is, if (a, b) and (a', b') are directions in the same cone of f ,  then, for each 
p, h(pa'b)(oL ~/(f))  ~_ h(pa"b')(Ol~/{f)). 

Proof  First consider connectedness: this follows from the proof of Lemma 2.6 

in which (a Cartesian power of) XN,(a,b) is explicitly identified as a solenoid; we 

give a different direct proof here. The dual of the group X g'(a'b) is the 9~-module 

(3.5) ~ = 
~t 

( f  , 1 - (U~b U'~)N) " 

In order to show that  X N,(a,b) is connected, it is therefore enough to show that  

is torsion-free as an additive group. This in turn is guaranteed if there are no 
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polynomials p, q e ffl for which h(ul, u2) = p] + q(1 - (UlbU]) N) is a constant. 

Now if h is constant, then for every z E C, 

(3.6) f ( z  Nb, z N~) = Cz k 

for some k, provided that {(0, 0), (-Nb,  Na)} is not in the support of f .  The left 

hand side of (3.6) is a polynomial in z N since a and b have no common factor, 

so k is a multiple of N. Writing out f(ul,u2) as ~uJ2fj(Ul) we get 

(3.7) fo(Z Nb) + zNa f ( zNb)  -~ . . .  -~ fd (zNb)z  dNa = Cz  cN. 

Since a and b are coprime, we can read off all the coefficients of f from (3.7), 

which is absurd. We deduce that ~ is torsion-free so X g,(",b) is connected. 

Now consider the convergence of (2.7). By (2.8), it is enough to establish 

this for all the finite places. By the remarks following (2.10), it is enough to 

show this for the map ~,(1,0) (in the notation of Lemma 2.5~notice that  the 

normalization factor a - @  in (2.7) comes from (2.10)). That is, we may assume 

that  (a, b) = (1, 0). Now in (2.18) the monomials r~(x) are independent of N, 

so the d algebraic functions ,~I(X),...,)~d(X) are also independent of N. Let 

)~k,j = ,~k(e2~rij/N), for k = 1 , . . . ,  d and j = 1 , . . . ,  N. Then we claim that 

d N 
1 (3.8) log+ 

k = l  j = l  

converges as N --* (x~. Now by Lemma 2.2, the map ~N,(1,0) is expansive. It 

follows that each ~k does not vanish on the unit circle (if Ak vanished at e 2"~i8 
then e 27ri~ would have to lie in the closure of {z E CI f(z ,  w) = 0 for some unit 

root w}; by IS] expansiveness requires that this set miss the unit circle). Let 

U denote the p-adic unit circle. This is the closure of the group of algebraic 

roots of unity inside ~p, the smallest field containing Qp and all the algebraic 

numbers. Each of the )~k extends to a continuous function on U. Now U is a 

locally compact group and log + I)~klp is continuous on U, so we may take the 

expression in (3.8) as a Riemann sum for the p-adic integral (see [H], Chapter 4 

for the details). This shows that  the contribution at p can be written 

d N d 

(3.9) N--.c~lim ~1 k=lE j=lE1Og+ IAk'J]P = k=lE/U l~ ]Ak(e2"is)]Pd#" 
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Notice that  in (3.9), # denotes Haar measure on the locally compact group U. 

Finally, consider the effect of changing (a, b) to (a t, b') in the same associated 

cone of f .  Let the associated matrices be 

(3.1o) 

I '~ 
0 0 I 0 

A =  ' . .  ; 

I 
Ro R1 . . .  R d - 1  

as in (2.16). 

A ! 

I 1 0 
0 I 0 

I 
R~ R~ . . .  R~_ 1 

Since we are in the same cone, the matrices Ri and R~ differ only 

in that Ri is the N-circulant of r i (x)  = f i x  j,  while R~ is the N-circulant of the 

polynomial r~(x) = f i x  y ,  where rr: j ~-+ j '  is some fixed permutation. Now let 

"~(k,j) ~- ~lk(e27rij/N) be the eigenvalues of A'; these numbers may be obtained 

as follows. For each j = 1 , . . . ,  N, solve (2.18) for ~ with x = e 2~r i j /g .  Now the 

Newton polygon of (2.18) with x set equal to any unit root does not change if 

each ri is replaced by r~, so the p-adic size of the eigenvalues is not changed. By 

(2.8) the same holds for the infinite place. | 

4. Or i e n t e d  ent ropies :  genera l  expans ive  case 

Now consider an expansive Z 2 action a by automorphisms of a connected compact 

group X. By IS], we may assume that a = a N for a Noetherian ~R-module 9)I 

with the property that a ~/p is expansive and X~/p  is connected, for each prime 

ideal p associated with ~ .  Choose a prime filtration 

(4.1) ff)I = ~rto ~ ff-~l ~ . . -  ~ ~ s - 1  ~ M s  --  { o }  

of 9:R [S]. Successive quotients ~J~j/~'J~j+l a r e  isomorphic as ~R-modules to cyclic 

modules of the form fR/qj, with qj a prime ideal containing an associated prime 

of 92t. By [LSW], the entropy of a m is given by a finite sum 

s - 1  

(4.2) h (a~)  = E h ( a ~ / ~ ) "  
j=O 

In (4.2), each term is then either zero (if qj is non-principal) or a Mahler measure 

of the form (1.6). 
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Definition 4.1: Let a = a 9~ be an expansive Z 2 action by automorphisms of 

a compact connected abelian group. The a s s o c i a t e d  cones  of a are the open 

cones in Z 2 with vertex at the origin whose edges are lines orthogonal to lines 

joining any pair of points in the support of any one of the polynomials f l , - . . ,  ft ,  

where ( f l ) , . . . ,  (ft) are the principal ideals appearing in a prime filtration of 9~. 

That  is, given the module 93I, form a filtration of the form (4.1). Each ideal 

qj that  is principal gives rise to finitely many lines in the sense of Definition 2.4: 

the cones associated to a w~ are then the open cones defined by the union of all 

those lines. 

Definition 4.2: For any direction (a, b), the (a, b ) -o r i en ted  local  e n t r o p i e s  of 

a 9n are the quantities (in terms of (4.1)) 

j:qj principal 

where the summands are defined by Definition 2.3. | 

THEOREM 4.3: Let ~ = ( ~  be an expansive Z 2 action by automorphisms of 

a compact connected abelian group. Then, for any direction (a, b) inside an 

associated cone of (~, there is an oriented local decomposition of the entropy 

h ( . " )  = 

p<_oo 

The decomposition is constant as (a, b) varies inside an associated cone of a. 

Proof." Notice that  since 93I is torsion-free as an additive group, the same is true 

of each succesive quotient 9~j/ffJtj+l for which qj is principal: if qj is a principal 

prime ideal containing an associated prime of ffJt, then qj is itself an associated 

prime of ffft. On the other hand, if qj is an associated prime of 92l, then there is 

an injective fit-module homomorphism fit/qj ~ Y/t, dual to which is a surjective 

homomorphism from the connected group X ~  onto X~/q~; it follows that  Xo~/qj 

is connected. 

By Definition 4.1 and Theorem 3.1, the summands in Definition 4.2 are all 

defined. By Theorem 2.5 we therefore have, for each j with qj principal, 

(4.3) h(a 9~/"j) = ~ h (a'b)(a~/"~). 
p<or 
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On the other hand, by [LSW], 

(4.4) h (c~ )  = E h(a~/q')  = 
J 

(see Definition 4.2). 

cone of a, 

( 4 . 5 )  = 

ORIENTED LOCAL ENTROPIES 

h(c~ ~/q' ) 
J:q3 principal 
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It follows that, for a direction ( a, b) within an associated 

h(;'b>(- = h(;'b>(- ") 
J:qk principal p_<oo p<oo 

by Definition 4.2. 

The stability of the decomposition within associated cones is a direct conse- 

quence of Theorem 3.1. | 

Remark: Since our primary goal is simply to exhibit a decomposition into ori- 

ented local entropies, Definition 4.2 is the simplest possible approach. An alter- 

native is the following. Let 9~ be the fit-module corresponding to the expansive 

Z 2 action a. Then Definition 2.1 applies directly, producing for each direction 

(a, b) and integer N > 1 an automorphism of a solenoid flN,(a,b)- The oriented 

local entropies may then be defined exactly as in Definition 2.3. However, to be 

sure that the limit in Definition 2.3 exists, one needs to reduce to the cyclic case. 

To see that  this approach gives the same decomposition as exhibited in Theorem 

4.3, consider the chain of Z[u~ub2]-modules 

(4.6) <1 - uNt'u2Na)gJt D (1 -- uNbu~Na)gJ~X D' - "  D (1 - uNbu~Na)92its_1 " 

The chain (4.6) is not a prime filtration of the Z[u~u~]-module 

if2/(1 - uNbu;Na)9:;~ 

(for example, as we have seen in Section 3, if 99~ is a cyclic fit-module, then 

ff2/<l- uNlbu~N'~)9~ is in general a non-cyclic Z[u?ub2]-module.) Nonetheless, 

the j t h  succesive quotient in (4.6) corresponds to the dynamical system obtained 

by restriciting to points of period (Nb, -Na) in the system corresponding to the 

fit-module fit/qj. That is, if the fit-module filtration is taken before restricting 

to periodic points (as in Definition 4.2) the oriented local decomposition of the 

entropy obtained is exactly the same as that obtained by first restricting to 

periodic points and then making a Z[u~u~]-module filtration, as in this Remark. 
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5. Examples  and remarks 

To clarify Sections 3 and 4 we give some examples. 

Example 5.1: Let f (u l ,  u2) = 3Ul - 2, and consider the direction (a, b) = (2, 1). 

We need to understand the map • on the module 

Z[U~ 1 , U2 =[:1 ] 

(3ul - 2, 1 - (UlU22)N) " 

r,) 11 
Apply the change of variables matrix B =  [1 1[" This makes Bf(ul ,u2)  = 

L J 
3UlU2 1 - 2 ,  and transforms u~u2 into ul and ulu2 2 into u31u-~ 5. We can therefore 

identify fiN,(2,1) with the map dual to multiplication by ul on the Z[u~l]-module 

~[~tl : l : l ,u~l]  ~ ~[Zt~l l]~u2Z[I t~11]~' ' '~?- t5N-l~[u~l  1] 

(3UlU21 --  2, 1 -- (U31U25) N) = L 
z[u~l]  5~ 

where (notice that ulu2 1 = Ul3N+lu  5N- l )  

_ -  

0 3Ul 3N+l 

--2 0 

3Ul 3N+l --2 
3Ul 3N+l - 2  

Then 

det(A) = 1-I ( - 2  + (3u-[3N+l)e2"~ij/5N). 
j~--I,...,5N 

It follows that the eigenvalues of the rational matrix corresponding to ~N,(a,b) 

are given by 

where ee are unit roots, and e = 1 , . . . ,  5N(3N - 1). Thus, the oriented entropy 

in this direction is all 3-adic, and 

h(2 , ' ) (~ ' )  = o; h~") (~  ~)  = o; h~'~)(~ ~)  = log~. 
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Similar calculations yield the following picture for the local entropies in the 

system: 

/ \ ,  

In this picture the dotted line represents the line separating the two open cones 

associated to the polynomial. 

Example 5.2: In order to illustrate what may happen in a direction separat- 

ing the associated cones, consider the direction (a, b) -- (0, 1) for the system 

considered in Example 4.1. The map is now • u2 on the module 

7/~[u =1=1 u=t= 11 
L 1 , 2 1  

(3ul - 2, 1 - uN} " 

Notice that 

j = 0 , . . . , N - 1  

and under this isomorphism of Z[u~l]-modules, the ideal (3ul - 2} is sent to 

AZ[u~21] N, where A is the circulant matrix 

A = [i 3 - 2  3 

0 - 2  3 
- 2  

Thus, in an obvious sense 

<3~1--2,1--~N> = ~ [u2 ~1] 

as Z[u~Lmodules, so the compact group automorphism dual to multiplication 
Zru •  u• 

by u2 o n  (3u'l_x2,'l 2u~) is (topologically conjugate to) the full shift on [det(A)l = 

1(-3) N -2NI symbols. Algebraically, the map is the full shift with alphabet given 

by the f i n i t e  ZN/AZ g. 
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Example 5.3: Let f (ul ,  u2) = 10+21ul + 105u2, so h(o~ ~/(f)) = log 105. Similar 

calculations yield the following portrait of the local entropy contributions. 

2,5,00 ~ 7  

........................ ! ........................... 

In the diagram the three dotted lines represent the lines separating the six 

open cones associated with the polynomial. 

We close with some problems and remarks. 

[1] We have restricted attention to expansive actions on connected groups. 

By a result of Kitchens and Schmidt (see [KS]), such actions can only be 

carried on abelian groups so the abelian assumption is not really needed in 

Theorem 3.1 and 4.3. 

[1.1] The assumption of expansiveness cannot be relaxed totally: consider 

the Z 2 action a N where 

= 2 ) .  
(c,d)EZ 2 

Then it is clear (cf. Example 5.1) that  (a, b)-oriented entropy is being 

exchanged between the 3-adic and the 2-adic and infinife components 

whenever the direction ( a, b) crosses a rational line. The oriented 

entropies in this example are all either infinity or zero. 

A more subtle form of non-expansiveness arises when the associated 

module is still Noetherian, but the action is non-expansive (in the 

language of [KS], these are actions with the Descending Chain Con- 

dition but without expansiveness; in the case of a Z action on the torus 

these are the quasihyperbolie actions considered in [Li D. For these 

systems, there are enough periodic points (they are dense by [KS]), 

and it is conjectured that a version of (2.2) holds (suitably altered 

to accommodate periods for which there are infinitely many periodic 
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points). In an important special case, namely the dynamical system 

corresponding to the module fit/(1 + Ul + u2), the local entropies can 

be computed by avoiding periods contained in 3Z x 3Z. For this ex- 

ample, it is found that  every direction for which the local entropies 

are defined has only Archimedean hyperbolicity, so the decomposition 

(1.10) is trivial. The module f i t / ( 4 -  Ul - u 2  - U l  I - u ~  -1 ) gives rise to 

a system with infinitely many points of each period. This means that  

the map ~N,(~,b) (as in Section 2.6) is always non-ergodic. While it 

is clear what oriented local entropy decomposition to expect in such 

a situation, our methods break down because the convergence of the 

growth rate of periodic points (see Section 7 of [LSW]) is no longer 

available. This is a weakness of our method rather than a reflection 

of the underlying entropy contributions from p-adic and geometric 

hyperbolicities. 

[1.2] The assumption of connectedness is of a different nature, and may 

be colloquially put  as follows: there are no interesting entropies on 

zero-dimensional groups. If a = a m is an expansive Z 2 action on 

a disconnected group X = X~ ,  then ff/~ has an associated prime 

p with the property that  p E p for some rational prime p. If p is 

non-principal, then by [LSW], the corresponding summand in (4.2) is 

zero. If p is principal, then p = (p>, and the corresponding dynamical 

system is simply the full shift on p symbols. There does not seem to 

be any meaningful sense in which the entropy of such a system may 

be decomposed into oriented local contributions: in particular, such 

a dynamical system looks exactly the same when viewed from any 

orientation. 

[2] If a m has positive entropy, then for every (a, b) ~ (0, 0), the automorphism 

a~,b) has infinite entropy by a result of Conze ([C]), and is naturally given 

by an infinite matrix of Toeplitz type. Can the compact spectrum of the 

associated operator be used to give the local entropies? If so, this may 

remove the difficulties encountered in trying to extend Theorem 4.3 to the 

non-expansive case. 

[3] Passing from Z 2 actions to Z d actions, d > 2, is reasonably straightforward 

by an inductive argument, but involves some complications. The geomet- 

ric structures corresponding to the associated cones of polynomials in two 
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[41 

variables need to be described, and the change of variable method becomes 

much more involved (to produce the matrix used to rotate the chosen ori- 

entation to an axis amounts to finding a convenient element of SL(d, Z) 

given a first column of integers with no common factor). 

The actions we have considered have positive global entropy (that is, pos- 

itive entropy as Z 2 actions) and they are therefore expansive as actions, 

but the individual elements are not expansive. At the opposite extreme, 

one may consider Z d actions generated by d commuting automorphisms of 

a compact connected group X,  each of which is expansive. It follows that  

X is a solenoid (ILl), and for d > 1 the action generated has zero global 

entropy. Actions of this kind are examples of principal Anosov actions in 

the terminology of [KSp]. In [KSp], a notion of non-irchimedean Lyapunov 

exponents is developed for such actions. We close with the following heuris- 

tic observation: Katok and Spatzier exhibit interesting rigidity phenomena 

for commuting Anosov maps (of which commuting expansive solenoidal 

automorphisms are examples) quite different to the case of single maps. 

The actions we have considered here, which as actions only are expansive, 

have positive entropy, and so on, are expected to not exhibit any of these 

rigidity phenomena, and in this sense to be similar to actions by single 

automorphisms. 
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